NAG Fortran Library Routine Document

G05HNF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of *bold italicised* terms and other implementation-dependent details.

1 Purpose

G05HNF generates a given number of terms of an exponential GARCH(p, q) process (see Engle and Ng (1993)).

2 Specification

```
SUBROUTINE GO5HNF(DIST, NUM, IP, IQ, THETA, DF, HT, ET, FCALL, RVEC,1IGEN, ISEED, RWSAV, IFAIL)INTEGERNUM, IP, IQ, IGEN, ISEED(4), IFAILrealTHETA(2*IQ+IP+1), DF, HT(NUM), ET(NUM), RVEC(40),1RWSAV(9)LOGICALFCALLCHARACTER*1DIST
```

3 Description

An exponential GARCH(p, q) process is represented by:

$$ln(h_t) = \alpha_0 + \sum_{i=1}^q \alpha_i z_{t-i} + \sum_{i=1}^q \phi_i(|z_{t-i}| - E[|z_{t-i}|]) + \sum_{j=1}^p \beta_j ln(h_{t-j}), \quad t = 1, \dots, T,$$

where $z_t = \frac{\epsilon_t}{\sqrt{h_t}}$, $E[|z_{t-i}|]$ denotes the expected value of $|z_{t-i}|$, and $\epsilon_t |\psi_{t-1} = N(0, h_t)$ or $\epsilon_t |\psi_{t-1} = S_t(df, h_t)$. Here S_t is a standardised Student's *t*-distribution with df degrees of freedom and variance h_t , T is the number of observations in the sequence, ϵ_t is the *observed* value of the GARCH(p, q) process at time t, h_t is the conditional variance at time t, and ψ_t the set of all information up to time t.

One of the initialisation routines G05KBF (for a repeatable sequence if computed sequentially) or G05KCF (for a non-repeatable sequence) must be called prior to the first call to G05HNF.

4 References

Engle R (1982) Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation *Econometrica* **50** 987–1008

Bollerslev T (1986) Generalised autoregressive conditional heteroskedasticity *Journal of Econometrics* **31** 307–327

Engle R and Ng V (1993) Measuring and Testing the Impact of News on Volatility *Journal of Finance* **48** 1749–1777

Hamilton J (1994) Time Series Analysis Princeton University Press

Glosten L, Jagannathan R and Runkle D (1993) Relationship between the expected value and the volatility of nominal excess return on stocks *Journal of Finance* **48** 1779–1801

5 Parameters

5	Parameters	
1:	DIST – CHARACTER*1	ıput
	<i>On entry</i> : the type of distribution to use for ϵ_t .	
	DIST = 'N'	
	Then a Normal distribution is used.	
	DIST = T'	
	Then a Student's t-distribution is used.	
	Constraint: $DIST = 'N'$ or 'T'.	
2:	NUM – INTEGER	ıput
	On entry: the number of terms in the sequence, T.	
	Constraint: $NUM > 0$.	
3:	IP – INTEGER	ıput
	On entry: the number of coefficients, β_i , for $i = 1,, p$.	
	Constraints:	
	$2 \times IQ + IP + 1 \le 20,$ $IP \ge 0.$	
4:		ıput
т.	On entry: the number of coefficients, α_i , for $i = 1,, q$.	ipui
	Constraints:	
	$2 \times IQ + IP + 1 \le 20,$ $IQ \ge 1.$	
5:	THETA(2*IQ+IP+1) – <i>real</i> array	ıput
	On entry: the initial parameter estimates for the vector θ . The first element must contain coefficient α_o and the next IQ elements must contain the autoregressive coefficients α_i , $i = 1, \ldots, q$. The next IQ elements must contain the coefficients ϕ_i , for $i = 1, \ldots, q$. The next elements must contain the moving average coefficients β_j , for $j = 1, \ldots, p$.	for
6:	DF – real	ıput
	On entry: the number of degrees of freedom for the Student's t-distribution. It is not reference $DIST = 'N'$.	d if
	Constraint: $DF > 2$.	
7:	HT(NUM) – <i>real</i> array Or	tput
	On exit: the conditional variances h_t , for $t = 1,, T$ for the GARCH (p, q) sequence.	
8:	ET(NUM) – <i>real</i> array Or	tput
	On exit: the observations ϵ_t , for $t = 1,, T$ for the GARCH (p, q) sequence.	
9:	FCALL – LOGICAL	ıput
	<i>On entry</i> : if $FCALL = .TRUE$, a new sequence is to be generated, otherwise a given sequence be continued using the information in RVEC.	s to

10: RVEC(40) - real array

On entry: the array contains information required to continue a sequence if FCALL = .FALSE..

On exit: contains information that can be used in a subsequent call of G05HNF, with FCALL = .FALSE..

IGEN - INTEGER 11:

On entry: must contain the identification number for the generator to be used to return a pseudorandom number and should remain unchanged following initialisation by a prior call to one of the routines G05KBF or G05KCF.

ISEED(4) - INTEGER array 12:

On entry: contains values which define the current state of the selected generator.

On exit: contains updated values defining the new state of the selected generator.

- RWSAV(9) real array 13:
- 14: IFAIL - INTEGER

On entry: IFAIL must be set to 0, -1 or 1. Users who are unfamiliar with this parameter should refer to Chapter P01 for details.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, because for this routine the values of the output parameters may be useful even if IFAIL $\neq 0$ on exit, the recommended value is -1. When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

6 **Error Indicators and Warnings**

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL = 1

On entry, IP < 0, IQ < 1, or $DF \leq 2$, or NUM < 0, or DIST \neq 'N' and DIST \neq 'T', or $2 \times IQ + IP + 1 > 20.$ or

IFAIL = 2

Invalid sequence generated, use different parameters.

7 Accuracy

Not applicable.

Further Comments 8

None.

Input

Input/Output

Workspace

Input/Output

Input/Output

9 Example

See Section 9 of the document for G13FGF.